
Team Tech Support

2505 Hayward St.
Ann Arbor, MI 48109

Jackson Eggerd
 David Grover

Sara Lopez
Connor McKinley

Atharv Relekar
Sarah Rodriguez-Medina

Product Engineers

April 19, 2022

1

Table of Contents
Executive Summary 3

Introduction 4

Design Overview 5
3D Printed Parts 5
Vision Tracking 7
Line Following 10

Cost 11

Performance 13
Hitch Testing 13
Line Following Testing 13

Future Improvements and Potential Issues 14

Conclusion 16

References 17

2

Executive Summary
Hospitals are currently experiencing a shortage of nurses due to the impact from the
coronavirus pandemic. In order to improve hospital efficiency and maintain patient
care, Team Tech Support had the idea to develop a robot that will be able to complete
tasks around the hospital and allow nurses to focus on more important
responsibilities. Our team has designed the BedBot, a scaled-down robot that
transports hospital beds from room to room and delivers supplies throughout the
hospital.

Our team had to create a design that would be able to maneuver efficiently in a
hospital setting and fit the needs of both patients and nurses. Since hospitals use
different bed types and designs, we created unique mounting plates for each hospital
bed. This universal attachment allows BedBot to work with any type of bed, for the
mounting board contains a rectangular colored strip that is detected by the robot.
Once the strip is detected at a certain distance, the robot will stop moving and drop the
hitch to attach to the mounting plate. Once secured, the BedBot will be able to tow the
hospital bed to another location using line navigation and obstacle detection. Our
team decided on towing the bed because it allows for easier turns and the
implementation of line navigation.

For line following, three infrared (IR) sensors are located at the front of the robot
along the center of the bottom plate and pointing down to the ground. The two outer
sensors are able to detect the ground surrounding the black line. When it detects a
line, the robot is able to determine how tight the correction turn needs to be, thus
maintaining its path along the black line. A more detailed description can be found in
the line following section below.

To implement obstacle detection, an IR-range sensor is located at the front of the
robot on the bottom plate and pointing straight across. The sensors reflect a beam of
infrared light and then measure the distance of the reflected light. When the distance
between our sensor and an object is 15 cm, the robot stops moving until it no longer
detects the object.

To implement the vision system, a PixyCam is located on the back of the robot on the
bottom plate. As previously mentioned, there is a colored strip on the mounting board
that is detected by the vision sensor, which is the PixyCam, to drop the hitch onto the
mount. A PixyCam uses representations of a trained object for the object detection
algorithm. Our trained object is the bright rectangular strip, for we have to choose an
object with a distinct shape and color in order to be properly detected by a PixyCam.

3

Once the PixyCam detects the colored strip, it moves directly towards it, thus
orienting the robot in front of the hospital bed. As soon as the PixyCam detects that it
is 8 cm away from the colored strip, it stops moving and drops the hitch.

The hitch is located on the top plate and is attached to the micro servo. The micro
servo has an integrated shaft that is controlled to rotate, thus allowing for the drop-
down motion of the hitch.

During testing, the robot was able to effectively detect objects that were in its line of
vision. However, the sensors are not able to detect objects that are not directly in front
of the bot, which may cause collisions. Another sensor may need to be incorporated in
order to resolve this issue before it is scaled up and in the market. We tested different
types of turns that the robot could make, and found that a ninety degree curve is
possible only if the corner is curved. Hospitals would need to create a pathway of black
lines going from room to room with the desired curve when necessary.

The scaled down BedBot is 16.1 cm x 18.5 cm x 9.7 cm. The full scale BedBot will be
scaled up by a factor of 6. Once scaled up, the BedBot is very cost effective. Scaling up
the design and manufacturing costs, five models of the BedBot would cost around
$68,000. We can compare our design to TUG, a robot that has been implemented in
hospitals. TUG autonomously delivers food and drugs and costs roughly $100,000. Our
estimated cost for BedBot is much lower than our robot is designed to conduct more
tasks, thus being more efficient for hospitals. Besides delivering hospital beds, BedBot
could also deliver food and supplies throughout the hospital. We mentioned that
mounting boards with rectangular strips would be attached to each bed, allowing for
any hospital to use this robot for the beds they own. The same can be said for delivery
compartments. If a mounting board is attached to a delivery compartment, BedBot
will be able to follow the same steps to navigate throughout the hospital and deliver
supplies as it does so.

Introduction
Due to the coronavirus pandemic, hospitals are currently experiencing a shortage in
nurses. Doctors have had to help with tasks that nurses usually do, taking time away
from their own responsibilities. Hospitals have had to offer a considerable amount of
employment bonuses in order to hire more people. Incorporating a robot into the
hospital that helps with these tasks would greatly benefit hospitals, nurses, and
patients.

4

Our task is to design a robot that transports hospital beds from room to room as well
as delivers supplies throughout the hospital. Our prototype must be able to detect
obstacles and avoid collisions, properly attach to either the bed or the delivery
compartment properly, and follow the correct path to correctly drop off the hospital
bed or compartment. This prototype will later be scaled up to fully operate in a
hospital setting, taking into account the size of the hallways, the weight of the
attachment, and the speed of the robot.

Our design of the BedBot is cost effective for hospitals as they no longer need to worry
about offering extreme bonuses when hiring all while incorporating a service that
focuses on the needs of nurses and patients. The following sections cover the specifics
on the overall design of the robot and how each system functions. These include the
hitch-system, the vision system, and the line navigation system. The last section
covers the future implementation of the BedBod as well as potential issues that should
be recognized.

Design Overview
Given the M-Bot base, our team began brainstorming the best way to utilize its
features to create our prototype. The preliminary design was a custom bed that the
robot could drive under and then raise up via a vertical linear actuator, but this was
scrapped in favor of a design that hitched onto the front of a bed, as it would be easier
to adapt to hospitals that used different brands of beds, and eliminated the need to
create a bed from scratch. We decided the wheels should be towards the front of the
robot in order to counteract any instability while towing. We put the arduino on the
lower face plate, along with the PixyCam facing backwards. We modeled our hitching
system on the common tow hitch for a trailer, with a hitch arm attached to the servo
on our robot, and a mounting plate that could be adaptable for multiple beds. Finally,
the infrared sensors for line following and collision avoidance were mounted at the
front of the bot on the lower face plate in order to have the most accurate readings of
their surroundings.

3D Printed Parts
As many parts of our robot are specific to our prototype and have complicated
geometry, the team decided to utilize 3D printing to create them.. Shown in Figure 1, a
mount was designed for the servo motor on the rear of the robot. Design of this mount
used exact measurements of the particular servo we used, along with slight tolerances
for installation. It was printed using a resin printer, as resin printing creates a
stronger end part than traditional filament in Fused Deposition Modeling(FDM)

5

printing. We used resin to print all of our parts, to be consistent and this servo mount
was incredibly useful, never had to be replaced or redesigned during testing, and is on
the final prototype of the robot.

The hitch system was entirely 3D printed, and was made up of two main parts: the
mounting plate and the hitch itself. The hitch itself was increased in thickness and
length as testing progressed and the team’s preference for the position of the hitch
changed. The mounting plate also changed as testing progressed and shortcomings in
the design were discovered, as shown by Figure 2. The first design broke while first
testing the towing capabilities of the robot, and was made thicker, along with extra
support, in order to withstand the forces generated while towing the bed. Finally,
when testing PixyCam, our team realized the accuracy was not as high as originally
theorized. Therefore, we decided to update the mounting plate to include a larger area
for the hitch, along with a small divot that the hitch would fall into while towing. This
final design worked incredibly well in final tests, and is what we stuck with for the
prototype, shown in Figure 3.

Figure 1: Servo mount displayed in 3-D printing software with supports for print

Figure 2: Iterations of the mounting plate

6

Figure 3: Final hitch, mounting plate, and servo mount shown in Solidworks

Vision Tracking
In planning for the robot to hitch to a hospital bed, we knew there would be several
complications. The first was finding the bed, as we didn’t want to rely on all hospital
rooms to be organized the same. Secondly, when the robot did find the bed, it would
need to drive up to it in a way that positioned the hitch inline with the hook on the
robot so that it would be able to drop down without missing the hitch. The team came
to the conclusion that the most realistic solution to these constraints would be a
vision tracking system capable of detecting the bed and guiding the robot through the
hitching process. The solution we settled on is a PixyCam camera due to its all-in-one
package of object detection, software visualization, and provided code library for
interfacing with the robot.

Object Detection
A key strength of the PixyCam is the software paired with it to visualize object
detection. PixyCam uses a system of object “signatures” which are representations of
a trained object saved to the camera that can be used for the object detection
algorithm. Using an application called PixyMon, the camera can be put into an object
capturing mode where the software will visualize a distinct object it picks out of the
video frame. Pressing a button on the camera confirms the object, saving its signature
to the camera. The ability to save objects to the camera allowed us to train the camera

7

separately with a computer and then plug it into the robot when it was ready to be
used. However, in this process, we discovered an imperfection in the detection, where
the camera finds several small objects which it incorrectly labels as smaller versions
of the object signatures we saved (see Figure 5). This “noise” was something we
decided was best to handle through code covered in the section below.

Figure 4: PixyMon software, multiple object signatures visualized

8

Figure 5: Text on t-shirt creates undesired background objects

Handling Objects With Code
The PixyCam itself is unable to make decisions about the objects it detects or the data
it sends to the robot. Instead, we used a code library made for the PixyCam that allows
Arduino code running on our Raspberry Pi to communicate with the camera. The code
is able to access a collection of all objects the PixyCam is detecting. To handle the
“noise” found previously, the code was designed to search through all objects and
determine the correct vision target. By default, the PixyCam returns only objects
matching the programmed signatures. Our chosen setup relies on only one object
signature, so the only factor left to consider is the size of each object. By testing the
PixyCam in several areas with different vision targets, we came to the conclusion that
it is reasonable to rely on all background objects being smaller than the desired vision
target. Using this conclusion, the final coded solution to finding the vision target
checks the width of each object detected and keeps track of which is largest at any
given moment. If the width of the largest object is above a 30 pixel threshold in the
camera’s view, the rest of the code continues to perform actions using this target.
Otherwise no object is large enough to be used for tracking and the robot enters an
error state where it must be redirected to another target by a person. We found this
solution reliably eliminated the chance that the robot began tracking false objects and
was able to stop the robot from performing actions when it no longer had a view of its
target.

9

Autonomous Control
For the broader algorithm controlling the robot, vision tracking is engaged when the
robot first enters a room looking for the bed it was assigned. Thus, our vision tracking
algorithm was designed to begin at the entryway to a room. With the current iteration
of our design, the robot will be manually switched to the vision tracking process once
it drives to the correct room using different code. Once vision tracking is engaged, all
controls are handled by the data provided by the PixyCam. To make sure the robot
moves to the correct location in the room, the robot first pivots towards the vision
target it sees on the bed. To judge this movement, the code measures the target’s
position on screen (particularly the horizontal position or “x” coordinate). If the
position exceeds a threshold to the left or right, the robot turns in that direction. Once
the bed is centered in the camera’s view, it drives towards the bed, pivoting again if it
loses alignment. To determine when to stop in front of the bed, the robot checks if the
target’s width on screen is above a threshold. Once it stops, the robot checks the
alignment of the bed with a narrower threshold, pivoting so that the hook is within
the ideal range of 1-2 inches from the hitch. Finally, the servo-mounted hook is
dropped down, connecting the robot and the bed. Now, when the robot drives out of
the room, it tows the bed, following the same path it took in.

Line Following
To navigate from room to room in the hospital, the team decided to use line following
in order to keep a majority of the robot’s navigation simple. We determined the most
reliable setup was three infrared line following sensors mounted on the front of the
chassis. These sensors detect the amount of infrared light reflected by the surface
directly underneath it. The sensors can be calibrated through the use of a dial on each
sensor. This allows the line following to work on different surfaces and lines as long as
the line reflects less light than the surface.

10

Figure 6: Three IR sensors pictured on the front of the robot

Steering
The collective data provided by the left and right sensors can be used to determine
which side of the line the robot is on. The data provided by the middle sensor can be
used to determine whether the robot is still centered on the line. For example, if only
the left sensor detects the line, we know that the robot is to the right and is not
centered on the line. However, if the middle and left sensor detect the line, we know
that the robot is almost on the line but is still to the right. This can be used to
determine how tight the correction turn needs to be.

Present Issues
The simplicity of the setup can lead to problems in a dynamic environment. For
example, differences in lighting on the robot’s path can result in the sensors reading a
false positive. This can ultimately lead the robot to lose the line it was following. Once
the robot no longer detects a line, it does not have sufficient sensors or logic to return
to the line. However, when deployed in a controlled environment, the robot often
behaves as intended.

Cost
We wanted to ensure that our robot was cost-efficient, and would not require too
many expensive materials to develop. Thus, our goal was to keep the costs for our
prototype under $150.

11

One of the major items that we needed was a PixyCam to detect objects and help the
robot hitch itself to the bed. This was our most expensive item at $50 and there was
not any cheaper alternative to use which would simultaneously not require extensive
knowledge about computer vision and object detection.

Another major required object that we needed was a Raspberry Pi. This was required to
implement the code for the object to follow the lines laid out and detect and move
towards the object needed. This was our second most expensive item at $41. A cheaper
alternative would have been an arduino, however the Raspberry Pi had better
input/output signals and port connections and thus, we justified the higher cost.
The rest of our items were much cheaper. The three IR sensors, which were used for
detecting the lines for our robot to follow, cost a total of $14. The two DC motors that
we needed to make our robot’s wheels turn cost only $4. Accompanying the motors,
we also had speed controllers to ensure that our robot could appropriately speed up
and slow down as needed. The two speed controllers cost a combined $20, which is
quite a bit more expensive than the motors but not as much as our two most expensive
items.

The micro servo needed to drop down the hitch to latch onto the hospital bed cost us
$6. Finally, the 3D printed parts cost us only a total of about $15. Since we decided to
3D print our hitch and our mount, we were able to save a lot of money on these parts
whereas it would have been much more expensive to buy them.

Item Quantity Total Cost

PixyCam x1 $50

Raspberry Pi x1 $41

Provided MBot Base x1 $75

Micro Servo x1 $6

3D Printed Parts x3 $15

IR Sensor x2 $14

Total: $136

12

Table 1: Cost of prototype

Performance

Hitch Testing

When testing the hitch, our team set out to ensure that the robot could successfully
pull just the bed, and then the bed with a simulated passenger. Our criteria was simply
that the bot must successfully pull the bed and simulate passing around corners and
on straights in a controlled manner, with no failure of parts. During testing of the
original hitch mounting plate, the ring snapped off of the plate, forcing a redesign
with more support for the ring on the mounting plate, and no more fatigue failures
occurred in subsequent testing. When PixyCam was used to hitch the bot onto the
mounting plate, we quickly realized we had overestimated its accuracy, as it could
only successfully hitch itself 10% of the time. We redesigned the mounting plate one
last time to include a larger area for the hitch to drop into, shown in Figure 2. This
increased the percentage of successful hitches by the robot to 90% of the time. With
this final mounting plate design, the BedBot was able to meet our criteria for towing
the bed and passenger in a controlled manner, with no failure of parts.

Line Following Testing

Our criteria for the BedBot’s ability to follow lines changed as testing went on. At first,
we wanted the robot to be able to take 90o sharp turns and smooth turns with a radius
of 1 inch, along with successfully staying on a straight. When we first started testing,
the bot could navigate sharp corners of about 45o and smooth corners of radius 6
inches. We updated the line following code to help the bot make sharper turns of
around 60o and of radius 3 inches, but this sacrificed the smoothness of how the robot
drove on the straights, as the more dramatic updating it did caused it to zigzag instead
of driving straight. We tuned the robot to find a balance between these two aspects,
finding that the robot could still drive smoothly on straights while making 50o sharp
turns and smooth turns of around a radius of 4.5 inches. Our group agreed that the
line following system was successful with these values, as it achieved a good balance
of our original criteria, and since we could design the turns it would take in a real-
world setting, we could work around these values, we just wanted to optimize them as
much as possible.

13

Future Improvements and Potential Issues
Limited time for this project means that not everything that we envisioned for this
robot was possible. We had to simplify our designs to a version that could be
completed in just a few months. However, the current iteration of our robot was
created with the idea in mind that this was a proof of concept. It has been sized down
from its real world application as well. If given the time needed to perfect our vision,
we would be able to make a multitude of improvements.

The current system we use for navigation works well but could be improved upon
relatively easily. The IR sensors that we use for the line following bring with them
some limitations. By being restricted to following a particular line, the options for
where the robot can go is greatly limited. This method also creates an issue at corners
and intersections. The robot is not capable of the typical 90 degree turns as it can’t see
them coming until the robot is already off course. Additionally the robot can only ever
go straight at cross intersections. To fix these issues we would replace the IR sensors
with a second PixyCam. The PixyCam will be able to detect colors quickly and much
more accurately than the current design. One Pixie alone does the job of three IR
sensors, greatly reducing the amount of complexity in the robot. Along the lines we
would be able to put colored stripes to indicate when a turn was approaching. This
would allow the robot time to slow down and switch to code that completes 90 degree
turns. The colors can also be used to indicate an intersection so that the mapping
system can tell the robot which way to go.

More sensors would be added to improve our obstacle detection. The current system
can only really detect objects directly in front of it. If something is coming from the
side then the robot wouldn’t be able to respond until it was too late. This is fixed quite
easily by adding a sensor on each side of the robot. They could all run on the exact
same code and wouldn’t take up a great amount of processing power.

A feature that we weren’t able to show in the given timeframe is that our robot can
carry or tow much more than just beds. The hitch plate we designed can easily be
modified to fit many attachments. The robot would be able to pull a food cart and
deliver orders to patients. It could tow a supply cart to help nurses restock their
rooms. The robot could also be able to pull a cleaning attachment that would vacuum
or mop the floor as it went along to help with sanitation. One of our main goals was to
create a robot that would be able to help hospitals in many places, taking up the small
tasks that take up too much time for the limited number of nurses.

14

One of the ways that we plan to help the nurses is by having our robot guide patients.
This would be a far future goal but realistic. We could add a screen display that could
be interacted with or display instructions. The robot would be able to show patients
which room to go to completely autonomously.

To help the robot appear appealing to the general public we would make a custom
chassis. The robot would look much more approachable without wires hanging
everywhere and a custom chassis would allow for the above improvements to easily be
implemented into the design as we see fit. Without the limitation of the M-Bot, the
cameras and sensors could be placed in areas to allow for better scanning.

A long term plan that we always had in mind was an internal mapping system. The
current iteration of the robot can get from place to place but only if there is a direct
line to it. An internal mapping system would let the robot travel to any room no
matter where it was situated in the hospital. We could use the color coded floor tape if
needed to mark out intersections but if the technology becomes advanced enough, we
could take out the need for line following altogether. This would require a lot of
testing and time but is essential if our design was to be used in the real world.

There are a few possible issues we foresee with our robot. One that often comes up in
discussion is the topic of having no nurse supervising the patient during travel. This
makes complete sense and we have come up with a few solutions. First is to somehow
implement the robot with a way to monitor vitals. The robot could send out an alert if
it notices the patient is in danger or distress. A second option was to only use this
method for the lower priority patients. If the patient is the type that is already in
recovery or has a simple ailment then the possibility of something going wrong on the
journey is greatly reduced. Finally the robot could simply be used to move empty beds.
Empty beds are still moved dozens of times a day as hospitals come and go. This is the
perfect task for a robot to work on while the doctors and nurses focus on the patients.
Another issue that needs to be considered is how comfortable nurses and patients
would be with the idea in the first place. It's hard to put the same trust into a robot
that you would a living being. To solve this problem we would have a trial run with the
robot. We would start by just having one robot in the hospital doing simple jobs. As it
performs we could survey nurses and patients on how to improve the design. Our goal
is to make sure that everyone would feel safe with our robot. Our robot is designed to
improve the lives of those in the hospital and we will do our best to achieve this.

15

Conclusion
Team Tech Support has put extensive time and energy into developing a robot capable
of having a real world impact for hospitals. Every component of our design has gone
through a series of iterations and refinements to increase our design’s effectiveness
and create a realistic prototype of our vision for the robot. Analyzing both
performance and cost, our team is confident that the BedBot can be competitive in the
developing market of hospital robots. While there are a few remaining issues with the
current design, we have devised a number of improvements and new methods to bring
the robot closer to a complete product. Overall our team is satisfied with the progress
we’ve made and believe strongly in the product we’ve developed.

16

References
Boyle, P. (2021, September 7). Hospitals innovate amid dire nursing shortages. In
Association of

American Medical Colleges. Retrieved from
https://www.aamc.org/news-insights/hospitals-innovate-amid-dire-
nursing-shortages

Robots Making Rounds (2008, March). In MachineDesign. Retrieved from
https://www.machinedesign.com/archive/article/21826528/robots-making-ro
unds

Simon, M. (2017, November 10). Tug, the Busy Little Robot Nurse, Will See You Now.
In

Wired. Retrieved from
https://www.wired.com/story/tug-the-busy-little-robot-nurse-will-see-
you-now/

17

